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Abstract

A finite-difference method for solving three-dimensional time-dependent incompressible Navier–Stokes equations in
arbitrary curvilinear orthogonal coordinates is presented. The method is oriented on turbulent flow simulations and con-
sists of a second-order central difference approximation in space and a third-order semi-implicit Runge–Kutta scheme for
time advancement. Spatial discretization retains some important properties of the Navier–Stokes equations, including
energy conservation by the nonlinear and pressure-gradient terms. Numerical tests cover Cartesian, cylindrical-polar,
spherical, cylindrical elliptic and cylindrical bipolar coordinate systems. Both laminar and turbulent flows are considered
demonstrating reasonable accuracy and stability of the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

During the last decades, direct numerical simulations (DNS) have been recognized as a powerful and reli-
able tool for studying the basic physics of turbulence. Numerous examples showed that results obtained by
DNS are in excellent agreement with experimental findings, if the latter are reliable [1]. In some respects
DNS-based studies are even more advantageous than experimental ones since far more detailed information
on the flow field structure can be achieved. Another, perhaps even more important advantage is that DNS
allows exposure of new important physical mechanisms of turbulence production and self-sustainability via
so-called unphysical experiment [2,3].

However, one major difficulty that arises with a numerical investigation of turbulent flow is the presence
of a vast, continuous range of relevant scales of motion which must be correctly resolved by numerical
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simulation. DNS of turbulent wall-bounded flows, for example, require order Re21/8 storage and order Re7/2

work to resolve dynamically significant velocity fluctuations at large Reynolds numbers [4]. That is why most
DNS-based works are restricted to relatively low Reynolds number and focus on simple-geometry flows for
which accurate and efficient numerical algorithms exist. For wall-bounded turbulent flows, the majority of
successful DNS-based studies dealt with the simplest geometry cases such as a plane channel, a flat plate
boundary layer, a circular pipe and some other similar cases [5–9].

The turbulent flows listed above are one-dimensional in the mean. Numerical investigations of multi-
dimensional (in the mean) turbulent flows are rather more restricted. Among them are the flows in noncircular
straight duct of square [10–12], elliptic [13], and eccentric annular [14] cross-sections. For several other exam-
ples see [4] and the references therein.

For simple computational domains the generation of the computational grid is trivial; the simulations of
flows in industrially relevant geometries, on the other hand, are extremely complicated and time consuming
since the shape of the domain must include the wetted surface of the geometry of interest. During the past three
decades numerical grid generation has become an essential part of computational fluid dynamics. For mathe-
matical aspects of numerical grid generation and applications see [15,16] and the references therein. An alter-
native numerical procedure that can handle the geometric complexity is an immersed boundary method (IBM).
Nikitin and Yakhot [13] have used IBM for DNS of turbulent flow in elliptic ducts. IBM allows the reduction of
complex-geometry simulation to simple-geometry one (for more information on IBM see [17,18]). Possessing a
number of remarkable features, IBM is inconvenient, however, for the detailed flow analysis in the vicinity of
solid curvilinear boundaries, i.e., in the most interesting flow region from the dynamical point of view.

Sometimes the geometry of the flow permits an introduction of curvilinear orthogonal coordinates, so that
the flow boundaries coincide with the coordinate surfaces. In these cases near-wall regions may be resolved in
detail on a simple computational mesh. An extensive literature is devoted to the different aspects of numerical
solution of the Navier–Stokes equations (NSE) in curvilinear orthogonal coordinates: cylindrical [7,19–28],
spherical [29,30], and bipolar [14,31]. Of particular interest are conservation properties of numerical schemes
and treatment of coordinate singularities.

This paper presents a method for finite-difference approximation of the incompressible NSE in arbitrary
curvilinear orthogonal coordinates. The corresponding discrete equations retain a number of important local
and integral properties of the NSE. In particular, the energy conservation property, which means that the non-
linear and pressure-gradient terms do not produce kinetic energy of the motion but only redistribute it among
different flow regions, is held identically by the discretized equations.

Spatial discretization of the incompressible NSE with sufficiently fine resolution leads to stiff problems and
requires implicit methods for time advancement. Fully implicit methods produce a set of nonlinear coupled
equations for the flow variables on the new time level, and are usually prohibitively costly for long-term cal-
culations, such as turbulent flow simulations, for example. Semi-implicit methods, in which only a part of the
Navier–Stokes operator is treated implicitly, present a reasonable compromise for this class of flows. In fact,
the majority of direct and large eddy simulations to date have used semi-implicit time-advancement methods.
For wall-bounded flows only the linear viscous term of the NSE is usually treated implicitly and the corre-
sponding set of linear equations is solved effectively with the help of an approximate factorization technique.

One of the popular schemes was proposed in [32]. It consists of a second-order-explicit Adams–Bashforth
method for the convective terms and a second-order-implicit Crank–Nicolson for the viscous term. The
Adams–Bashforth method, as well as first- and second-order accurate Runge–Kutta methods, is uncondition-
ally unstable for a pure convection equation. However, the instability is weak, and the method usually works
for CFL numbers less than 1.0 in the presence of a viscous term. Third-order accurate Runge–Kutta methods
seem more suitable for convective terms because of their stability. Slightly different semi-implicit schemes,
based on a third-order accurate low-storage Runge–Kutta method were presented in [22,33,34]. The scheme
with similar properties but incorporating an algorithm of time-step size control [21] was proposed in [9]. All
these are the three-step schemes, which require three times more operations to advance on a new time level
compared with the scheme of [32]. However, due to high accuracy and stability they are often preferable com-
pared with the Adams–Bashforth based schemes.

The mentioned Runge–Kutta based schemes use second-order accurate implicit methods for the viscous
term (or other linear terms which are treated implicitly), thus, their overall accuracy is second-order in time.
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Apparently, it is impossible to achieve a third-order accuracy within a classical three-step semi-implicit
Runge–Kutta method, each step of which consists of the three substeps: (a) evaluation of the convective
and viscous terms of the NSE for a given velocity field, (b) solution of a linear system, connected with the
implicit terms, and (c) solution of a Poisson equation for the pressure (or pseudo-pressure). A pure third-order
accurate semi-implicit Runge–Kutta scheme for NSE was developed in [35]. The higher order of accuracy is
achieved due to one extra substep (b). Thus, the scheme may be referred as a 3 1

3
-step scheme. Note, that

among the three substeps, solution of the Poisson equation is usually the most time consuming substep except
in the case of a spectral spatial discretization. On the contrary, evaluation of the nonlinear convective terms in
substep (a) is the most expensive for spectral methods. Regarding substep (b), it is a relatively inexpensive sub-
step both in spectral and finite-difference methods when using approximate factorization technique. Thus, the
overall overhead of the scheme is similar to that of the classical one. The scheme is supplied with a built-in
local accuracy estimation and time-step control algorithm [21], which proved itself to be convenient and effi-
cient, especially for flows with variations in characteristic time scales.

One of the difficulties in constructing high-order-accurate implicit time integration schemes for the NSE
is the so called pressure problem. It arises because the equations for the velocity and the pressure are a
coupled system with the incompressibility condition. Nearly all numerical schemes for solving NSE in
terms of primitive variables use a fractional step approach in which the auxiliary velocity field is at first
computed by ignoring the incompressibility constraint and then projected onto a divergence-free field.
The determination of boundary conditions for the auxiliary velocity field and pressure related quantities
has been a subject of considerable discussion in the literature over many years (see [36] and references
therein). The scheme of [35] is constructed in terms of the spatially discretized NSE. Following this
approach [37,38] no boundary conditions for the auxiliary velocity fields are needed. Only the final velocity
field at each complete time step of the scheme satisfies the incompressibility condition exactly, while the
velocities on the intermediate time levels are divergence-free only to within a certain truncation error. Such
a trick leads to a relatively simple solution to the pressure problem while retaining a desired order of
accuracy.

The paper is organized as follows. Governing equations for incompressible flow in curvilinear orthogonal
coordinates are presented in Section 2. The derivation of the scalar form of the NSE using the metric stretch-
ing factors is discussed there as well. The numerical method is described in detail in Section 3. Spatial discret-
ization and the features of the discretized NSE are discussed in Section 3.1. Section 3.2 is devoted to the
derivation of the pressure equation. The time-advancement scheme is presented in Section 3.3. A method
of viscous term decomposition with the aim of using the approximate factorization procedure is proposed
in Section 3.4. A set of numerical tests covering laminar and turbulent flows in Cartesian, cylindrical, spher-
ical, elliptical and bipolar coordinates is collected in Section 4. A summary is given in Section 5. Numerical
evidence of the third-order accuracy of the proposed time-integrating scheme and discussion of energy conser-
vation property of the method are presented in appendices. The examples given in the paper are restricted to
interior flows. Formulation of the far-field boundary conditions peculiar to unbounded flows is beyond the
scope of the paper. However, as soon as the boundary conditions are properly formulated the proposed
scheme may by applied to unbounded flows as well.
2. Formulation and governing equations

Consider a flow of viscous incompressible fluid governed by the Navier–Stokes and continuity equations:
ou

ot
¼ u� x� mcurlx� gradp; ð1Þ

divu ¼ 0. ð2Þ
Here, u(t,x) is the velocity, p(t,x) is the full kinematic pressure (i.e., sum of the pressure and the velocity head
q|u|2/2, divided by the fluid density q), m is the fluid viscosity, and x(t,x) is the vorticity
x ¼ curl u. ð3Þ
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Eq. (1) is derived from the more conventional form of the NSE using the vector identities
�ðu � rÞu � u� curlu� grad juj2=2; r2u � graddivu� curl curl u
and with (2) and (3) taken into account.
We assume that the flow domain is D with the boundary C, and the boundary conditions are given in the

form
uðt; xÞ ¼ ubðt;xÞ at x 2 C. ð4Þ

Several other kinds of boundary conditions, as well as the conditions at the coordinate singularity points will
be considered below in the test examples. Concerning the boundary velocity ub, to be consistent with the
incompressibility the following condition must be satisfied:
Z

C
ub � ndC ¼ 0; ð5Þ
where n is the normal vector.
In this paper, we consider the case when D is a rectangular domain in some orthogonal curvilinear coor-

dinates (x1,x2,x3) connected with the Cartesian coordinates (x,y,z) by the relations
x ¼ xðx1; x2; x3Þ; y ¼ yðx1; x2; x3Þ; z ¼ zðx1; x2; x3Þ. ð6Þ

Vector operators in curvilinear orthogonal coordinates: gradient of a scalar field /, divergence and curl of a
vector field a = (a1,a2,a3) are defined as follows:
grad/ ¼ 1

h1

o/
ox1

;
1

h2

o/
ox2

;
1

h3

o/
ox3

� �
; ð7Þ

diva ¼ 1

h
o

ox1

ha1

h1

� �
þ o

ox2

ha2

h2

� �
þ o

ox3

ha3

h3

� �� �
; ð8Þ

curl a ¼ h1

h
oh3a3

ox2

� oh2a2

ox3

� �
;
h2

h
oh1a1

ox3

� oh3a3

ox1

� �
;
h3

h
oh2a2

ox1

� oh1a1

ox2

� �� �
. ð9Þ
Here, h1,h2,h3 are the metric stretching factors
hk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
oxk

� �2

þ oy
oxk

� �2

þ oz
oxk

� �2
s

; k ¼ 1; 2; 3 ð10Þ
and h = h1h2h3.
Finally, taking into account, that by definition of vector product
u� x ¼ ðu2x3 � u3x2; u3x1 � u1x3; u1x2 � u2x1Þ;

the vector equations (1)–(3) may be written in a scalar form.

3. Numerical method

3.1. Spatial discretization

Let xs
k and xe

k be the start- and the end-points of the flow domain in the kth direction. The interval ½xs
k; x

e
k� is

divided into Nk equal segments of the size Dk, each. Thus, the flow domain is divided into N1 · N2 · N3 equal
rectangular volumes. Note, that in the physical space the size of the mesh cell is d1 · d2 · d3 �
D1h1 · D2h2 · D3h3 and varies from point to point. A staggered mesh layout [39] is used to represent the mesh
functions corresponding to different continuous unknown functions: pressure, three velocity components, and
three vorticity components. As usual, the pressure-nodes are in the geometrical centers of the cells. The uk

velocity-nodes are at the centers of the cell’s faces, shifted from the pressure-nodes at the half-cell distance
towards the kth direction. The xk vorticity-nodes are at the centers of the cell’s edges directed along the
kth direction. The sketch of the velocity- and vorticity-nodes layout is shown in Fig. 1.

All spatial derivatives in the expressions for the vector operations are replaced by central differences
approximating them with a second order of accuracy:



Fig. 1. Sketch of the velocity- and vorticity-nodes layout. Only the forefront cell faces are shown for clearness.
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df ðxkÞ
dxk

¼ f ðxk þ Dk=2Þ � f ðxk � Dk=2Þ
Dk

¼ of ðxkÞ
oxk

þOðD2
kÞ. ð11Þ
Location of the vorticity-nodes at the cell’s edges is dictated by the expressions for the vorticity components
following from (9). For example, x1 ¼ h1

h ð
oh3u3

ox2
� oh2u2

ox3
Þ. And, since x1-nodes are at half way between two adja-

cent u3-nodes along x2 direction and at the same time are at half way between two adjacent u2-nodes along x3

direction, the central-difference approximation of the x1 expression is straightforward. Similar considerations
are applicable to x2 and x3. Furthermore, one can see from Fig. 1 that each velocity node is surrounded by
four vorticity nodes at the same cell face. Thus, components of the viscous term of the NSE in the form mcurlx
can be easily approximated by central differences using the vorticity components in the adjacent points.

Different multipliers in the nonlinear terms of the NSE correspond to different nodes, therefore a cell-aver-
aging operation is applied where it is necessary:
�f kðxkÞ ¼
f ðxk � Dk=2Þ þ f ðxk þ Dk=2Þ

2
¼ f ðxkÞ þOðD2

kÞ. ð12Þ
Finally, the discretized NSE are written in the following form:
ou1

ot
¼ h1

h
h2u2

1h3x3
2 � h3u3

1h2x2
3

� �
� m

h1

h
dh3x3

dx2

� dh2x2

dx3

� �
� 1

h1

dp
dx1

; ð13Þ

ou2

ot
¼ h2

h
h3u3

2h1x1
3 � h1u1

2h3x3
1

� �
� m

h2

h
dh1x1

dx3

� dh3x3

dx1

� �
� 1

h2

dp
dx2

; ð14Þ

ou3

ot
¼ h3

h
h1u1

3h2x2
1 � h2u2

3h1x1
2

� �
� m

h3

h
dh2x2

dx1

� dh1x1

dx2

� �
� 1

h3

dp
dx3

. ð15Þ
The discretized continuity and vorticity equations follow from (8) and (9) after replacing the partial derivatives
by the finite differences:
1

h
d

dx1

hu1

h1

� �
þ d

dx2

hu2

h2

� �
þ d

dx3

hu3

h3

� �� �
¼ 0; ð16Þ

x1 ¼
h1

h
dh3u3

dx2

� dh2u2

dx3

� �
;

x2 ¼
h2

h
dh1u1

dx3

� dh3u3

dx1

� �
;

x3 ¼
h3 dh2u2 � dh1u1

� �
.

ð17Þ
h dx1 dx2
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To calculate the vorticity components down to the boundary points, the boundary conditions should be taken
into account. Only normal-to-wall velocity components are defined directly at the boundaries, therefore the
different expressions for the normal and tangential boundary conditions are used. Namely, at the surfaces,
bounding the flow domain in the kth direction, i.e., for xk ¼ xs

k; x
e
k ðk ¼ 1; 2; 3Þ, the boundary conditions read
uk ¼ ubk; h�1
m hmum

k ¼ ubm; m 6¼ k. ð18Þ

Here, ubk and ubm stand for the ks and ms components of the boundary velocity ub.

Similarly to the differential equations, the discretized equations obey several features. Let us denote by
Grad, Div, and Curl the finite-difference analogues of the gradient, divergence, and curl operators, respec-
tively. Note, first of all, that for any vector field a and any scalar field / the identities are held
Div Curla � 0; Curl Grad/ � 0; ð19Þ

which are the analogues of the known differential identities. This in particular means, that vorticity field is a
divergence-free irrespective of velocity field. Also, the discretized viscous terms of the NSE are divergence-free,
which means that these terms are mass conserving. The consequence of the second identity (19) is that the
pressure-gradient terms do not contribute to vorticity evolution directly.

Accurate description of the total kinetic energy balance is essential in turbulence simulations. The energy
balance equation is derived by dot multiplication of u and (1) and integration over the flow domain. Suppose
that the boundary velocity is zero, then the result will be the following:
dE
dt
¼ �m

Z
D
jxj2 dx; E ¼ 1

2

Z
D
juj2 dx. ð20Þ
It is important that for a zero normal-to-wall boundary velocity (impermeability condition) the nonlinear and
pressure-gradient terms of the NSE do not produce kinetic energy, but only redistribute it among the flow
regions. The consequence of the no-slip boundary conditions with zero tangential velocity (steady boundaries)
is a negativeness of the viscous term contribution.

In the discrete case kinetic energy is defined as
E ¼ 1

2

X
ðu2

1h1 þ u2
2h2 þ u2

3h3ÞD1D2D3 ð21Þ
with summation over all pressure-nodes. The energy balance equation is derived from (21) by differentiation
with respect to t and ouk/ot taken from (13)–(15). It is easy to show, that for divergence-free velocity field with
zero normal-to-wall boundary velocities contribution of the pressure-gradient terms to the total kinetic energy
production is identically zero. As regards the nonlinear terms, their contribution includes three pairs corre-
sponding to the three vorticity components. Each pair produces a zero contribution. For example, contribu-
tions of the first term in (13) and of the second term in (14) are (the D1D2D3 multiplier is omitted)
X
hu1

h1

h
u2h2

1x3h3
21;

X
hu2

h2

h
u1h1

2x3h3
12.
For impermeable boundaries it is easy to see that both these expressions are equal to
X
u1h1

2u2h2
1x3h3
(with summation over x3-nodes) and thus, they vanish each other.
The nonlinear terms may be discretized in a different way. For example, the first term in (13) and the second

term in (14) may be replaced with
1

h
u2

1x3h2 and
1

h
u1

2x3h1 ð22Þ
also with zero contribution to the total energy production. The nonlinear terms in the discrete equations may
be taken either in the form of (13)–(15), or in the form (22). Moreover, one pair of the nonlinear terms may be
taken in one form, while the other two in another. This option will be exploited for the singularity elimination
in polar coordinates.
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It may be shown after simple algebraic manipulations that contribution of the viscous terms into the dis-
crete energy equation is
1 A
condit
�m
X
ðx2

1h2;3 þ x2
2h1;3 þ x2

3h1;2ÞD1D2D3;
which is an approximation to the viscous dissipation expression in (20).

3.2. Pressure equation

Let us denote the right-hand-side terms of (13)–(15) except the pressure-gradient terms by v = (v1,v2,v3).
Then, the equations in vector form become
ou

ot
¼ v�Grad p. ð23Þ
Pressure equation is a consequence of the divergenceless of ou/ot
DivGrad p ¼ Divv. ð24Þ

Pressure boundary conditions follow from (23) and the boundary conditions for the normal velocity
components
ou

ot
� n
				
C

¼ oub

ot
� n
				
C

;

which leads to1
1

hk

dp
dxk
¼ vk �

oubk

ot
; xk ¼ xs

k; x
e
k; k ¼ 1; 2; 3. ð25Þ
It is essential that only the normal (and not tangential) component of the velocity boundary conditions is
needed to find the pressure. This is because only the normal-to-boundary velocity component may affect
the amount of fluid inside the flow domain and, thus, the incompressibility. From the physical considerations,
the divergenceless of ou/ot is possible only for a zero boundary flux
X oub

ot
� nDS ¼ 0. ð26Þ
Here, summation is extended over all boundary cell faces; DS is a surface element, at the boundary normal to
kth direction DS = hD1D2D3/(hkDk). It is easy to show that (26) is a solvability condition for the problem (24)
and (25) as well as for the variant mentioned in the footnote.

3.3. Time advancement

The spatial discretization of the incompressible NSE with sufficiently fine resolution leads to stiff problems
and requires implicit methods for time advancement. Semi-implicit methods, where only a part of the Navier–
Stokes operator is treated implicitly, are most efficient for turbulent flow simulations. We assume, that the
implicit terms are linear and denote them as Lu. The corresponding operator L will be referred as implicit oper-

ator. We propose the following 3-step procedure [35] to advance from the velocity field u = um at the time
moment t = tm to u = um+1 at the moment t = tm+1 = tm + Dt.

Step 1: vm = um · xm � mCurlxm,wm = vm � Grad pm, Div wm = 0, wm � njC ¼
oubðtmÞ

ot � n;
u0 � um

Dt
¼ 2

3
wm þ 1

3
Lðu0 � umÞ. ð27Þ
more practicable and algebraically identical way is to set vk = oubk/ot at the boundaries and to solve (24) with zero boundary
ions h�1

k dp=dxk ¼ 0.
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Step 2: v 0 = u 0 · x 0 � mCurlx 0,w 0 = v 0 � Grad p 0, Div w 0 = 0, w0 � njC ¼
oubðtmþ2Dt=3Þ

ot � n;
2 Nu
u00 � um

Dt
¼ 1

3
wm þ 1

3
w0 þ 1

3
Lðu00 � u0Þ. ð28Þ
Step 3: u ¼ ð9u0 � 3u00 � 2umÞ=4,
~u� um

Dt
¼ 1

4
wm þ 3

4
w0 þ 1

3
Lð~u� uÞ. ð29Þ
v00 = u00 · x00 � mCurlx00,

m
û� u

Dt
¼ 1

4
wm þ 3

4
ðv00 �Grad p0Þ þ 1

3
Lðû� ~uÞ; ð30Þ
umþ1 ¼ û�Grad q, Divum+1 = 0, um+1 Æ n|C = ub(tm+1) Æ n.

The first and the second steps of the scheme consist of the three successive substeps: (i) calculation of the
vorticity, nonlinear and viscous terms of the NSE, (ii) projection to the space of divergenceless vectors and
calculation of the pressure according to the procedure of the previous section, (iii) solution of the linear set
of equations connected with the implicit operator. The third step includes one more substep (iii) and besides
that, the pressure substep is performed last to ensure the divergenceless of the final velocity field. The scheme
possesses overall third-order accuracy unlike the other 3-step Runge–Kutta based semi-implicit schemes
[9,22,33,34] which are second-order accurate.2

The availability of two approximations to the final velocity
umþ1 ¼ uðtmþ1Þ þOðDt4Þ and ~u ¼ uðtmþ1Þ þOðDt3Þ

enables to estimate the local accuracy of time integration and to control the time-step size. The corresponding
algorithms are given in [21,35].

It is important that no specific boundary conditions are needed when solving equations including L oper-
ator. Eqs. (27)–(30) should be solved only for internal grid points, while in the boundary points velocities (nor-
mal to boundary) are obtained from the boundary conditions. Each of (27)–(30) is reduced to the form
ðI � sLÞx ¼ y; s ¼ 1

3
Dt; ð31Þ
where I is the identity operator, and x is the argument of L in the right-hand side of (27)–(30). For example,
for (30) x ¼ û� ~u and y ¼ Dt½0:25wm þ 0:75ðv00 �Grad p0Þ� � ð~u� umÞ. Eq. (31) is solved with zero boundary
conditions for x even in the case of unsteady velocity boundary conditions.

3.4. Choice of implicit operator

Specific form of the implicit operator does not affect formal order of accuracy of the scheme, but determines
its stability properties. In the trivial case of L ” 0 the scheme turns into a simple third-order accurate explicit
Runge–Kutta scheme. Generally speaking, the stability is the higher, the closer L is to the Jacobian of the
Navier–Stokes operator. An important criterion for choosing L is how effectively may be solved the corre-
sponding set of linear Eq. (31). In simulations of wall-bounded flows L is usually taken as a factorized viscous
term operator of the NSE. Let us decompose the viscous term of the NSE to a sum of three terms
(L1 + L2 + L3)u, then L is defined from the expression
ðI � sLÞ ¼ ðI � sL1ÞðI � sL2ÞðI � sL3Þ. ð32Þ

Thus, solution of (31) is reduced to the successive solution of three systems. If the matrices Lk have simple struc-
ture then the entire problem can be solved effectively. In Cartesian coordinates a second derivative in kth spatial
direction is often taken as Lk. Then solution of (31) reduces to the successive solution of tridiagonal systems.
merical evidence of the third-order accuracy of the present scheme is given in Appendix A.
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In curvilinear orthogonal coordinates the following way for the viscous term decomposition can be pro-
posed. It based on the representation of the divergence and curl operators as
3 Th
bound
condit
Div u ¼ 1

h

X3

k¼1

d
dxk

huk

hk
; Curlx ¼

h1

h j1
h2

h j2
h3

h j3

d
dx1

d
dx2

d
dx3

h1x1 h2x2 h3x3

							
							.
The viscous term in general case then can be written as
mðGrad Divu� CurlxÞ ¼ ðL1 þ L2 þ L3Þu;

where
L1u ¼ m Grad
1
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The characteristic feature of (33)–(35) operators is their generalized commutativity with a gradient operator
LkGrad/ ¼ Grad Mk/; Mk ¼ m
1

h
d

dxk

h

h2
k

d
dxk

; ð36Þ
which leads to analogous feature of operator L, defined in (32).3 It is easy to see that such a decomposition of
the viscous term requires solution of only tridiagonal systems of equations when solving (31).

The author’s experience suggests that in the case of a nonsingular coordinate system operators Lk may be
simplified while keeping the acceptable stability of time advancement. In simulations of wall-bounded flows
the minimal mesh size in the wall-normal direction is usually smaller than the mesh sizes in the other
e commutativity rule (36) is violated in the points adjacent to the boundaries when Lk operators are considered with no-slip
ary conditions for the tangential velocities. However, the rule holds up to the boundaries for periodic and shear-free boundary
ions.
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directions. If the mesh size in some direction does not restrict stability of time advancement then it is unrea-
sonable to include the corresponding operators into L. This may reduce the time required for time integration.
It should be noted, however, that the costs connected with the implicit operator resolution (when the approx-
imate factorization technique is applied) is usually significantly less than, say, the costs connected with the
pressure calculation. Therefore, the overall time savings of such simplifications are not considerable.

Other forms of the implicit operator may be used depending on the specific features of the computational
mesh and the flow under consideration. In particular, some linearization of convective terms may be included
into implicit operator to weaken numerical stability restrictions. Such a possibility will be considered below.

4. Numerical tests

In this section some applications of the method to different flows are presented. Comparison with numerical
results obtained by different methods are also shown to prove the qualities of the method.

4.1. Cartesian coordinates. Turbulent channel flow at Res = 180

Since the classical work of Kim et al. [5], fully developed channel flow at Res = 180 is used intensively to test
the accuracy and robustness of numerical techniques (see, for example [9,33,40,41]). Although the flow geom-
etry implies the use of Cartesian rather than curvilinear coordinates, this test case is included into the paper
because of untraditional spatial discretization involved in the present method.

The flow domain is a rectangular box in Cartesian coordinates of the size Lx · 2d · Lz in the streamwise,
wall-normal, and spanwise directions, respectively. Computational coordinates xk and metric stretching fac-
tors hk are defined from
4 Wa
denote

5 Th
conser
x ¼ x1; y ¼ yðx2Þ; z ¼ x3;

h1 ¼ 1; h2ðx2Þ ¼ y0ðx2Þ; h3 ¼ 1.
Hyperbolic tangent function y(x2) is used to obtain the mesh nodes clustering in the vicinity of the rigid
boundaries. The present simulations were carried out in the box with Lx = 2pd, Lz = pd at Reynolds number
4200 based on the laminar centerline velocity Ul (Ul = 1.5Ub, where Ub is the bulk velocity which is kept fixed
during the calculations) and the channel half-width d. In a developed turbulent regime this corresponds to a
Reynolds number Res of about 180, based on the turbulent wall velocity us, and the channel half-width.4 The
128 · 128 · 128 mesh was used with spacing Dþx � 8:8 and Dþz � 4:4 in the streamwise and spanwise directions.
The spacing in the wall-normal direction varied from 0.65 to 5.1 wall units. Time-integration was performed
with the time-steps Dt ¼ 0:025d=U l � 0:2m=u2

s and Dt ¼ 0:05d=U l � 0:4m=u2
s . The negligible differences were de-

tected in statistical results obtained with these two time-steps, while the results for the larger step Dt = 0.1d/Ul

reveal considerable deviations. This observation supports the hypothesis of [40] that Dt+ = 0.4 is the largest
time-step which accurately predicts turbulent statistics in turbulent channel flow at a given Reynolds number.5

The mean properties of the flow computed with the present scheme are in excellent agreement with the
results of Kim et al. [5] obtained by a fully spectral method with 192 · 129 · 160 grid points in computational
box of a size 4pd · 2d · 2pd. The skin friction coefficient, Cf ¼ sw=

1
2
qU 2

b is 8.06 · 10�3, which coincides with
the value obtained in [5] to �1.5%. The mean centerline velocity Uþc is 18.32 (+0.7%) and Uc/Ub = 1.16 just as
in [5].

The profiles of the mean velocity, root-mean-square velocity fluctuations, Reynolds shear stress, and root-
mean-square vorticity fluctuations in the near-wall region are shown in Fig. 2 and compared with the simu-
lation results by Kim et al. [5] and by Horiuti [42]. The latter are obtained by a fully spectral method with
128 · 128 · 128 grid points in computational box of a size 12.8d · 2d · 6.4d. The dashed line in Fig. 2(a) rep-
resents the law of the wall and the log law with the same additive constant 5.5 as in [5]. The comparison of the
ll units of velocity us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
and length ls = m/us are defined using mean wall shear stress sw. Normalization by the wall units is

d by a superscript +.
is hypothesis was refuted in [41], where little variation in turbulent statistics was observed up to Dt+ = 1.6 when using a fully
vative scheme.
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Fig. 2. Turbulent channel flow at Res = 180. (a) Mean velocity profile; (b) rms velocity fluctuations and Reynolds shear stress; (c) rms
vorticity fluctuations. Present results are compared with DNS data of Kim et al. [5] and Horiuti [42].

N. Nikitin / Journal of Computational Physics 217 (2006) 759–781 769
present results with those, obtained by fully spectral methods, show excellent agreement and prove the reason-
able accuracy of the method.

4.2. Cylindrical coordinates

An extensive literature is devoted to different aspects of numerical solution of the NSE in cylindrical polar
coordinates: [7,19,21–28]. Of particular interest are the conservation properties of numerical schemes and treat-
ment of coordinate singularities. Both these problems have relatively simple solutions within a present method.
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Consider for definiteness a pipe flow geometry. Computational coordinates (x1,x2,x3) = (q,h,z) are cylin-
drical coordinates stretched in the radial direction to get a grid node clustering near the rigid boundary
x ¼ r cos h; y ¼ r sin h; r ¼ rðqÞ.

The metric stretching factors (h1,h2,h3) = (hq,hh,hz) have the following values:
hqðqÞ ¼ r0; hhðqÞ ¼ r; hz ¼ 1.
According to Eqs. (13)–(17) the discretized NSE, continuity, and vorticity equations have the following form:
ouq

ot
¼ uh

qxz
h � uz

qxh
z � m

1

r
dxz

dh
� dxh

dz

� �
� 1
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dp
dq
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druh
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. ð41Þ
The pair of nonlinear terms in the NSE containing xz, i.e., the first term in (37) and the second term in (38),
are written in the form of (22), while the other two pairs are written in the regular form of (13)–(15). This is
done in order to eliminate a need of uq determination at the pole axis (i.e., at r = 0). In the regular form the
second nonlinear term in (38) would read 1

r0 uq
hr0xz

q. Thus, to evaluate ouh/ot in the nearest to the pole points
one would had to know the value of uq at r = 0. Everywhere in (38)–(40) uq appears in the combination ruq

which may be set to zero at r = 0, thus, the value of uq at r = 0 is not needed, and (37) may be solved only for
grid points with r > 0. Similarly, the vorticity component xh at r = 0 in (39) appears as rxh and, thus, does not
need to be determined.

The only quantity needed to be found at the pole is the axial vorticity xz. For its evaluation the Stokes the-
orem may be used, according to which the velocity circulation along a closed contour is equal to the vorticity
flux through a surface bounded by the contour. For each z consider the normal to the pole axis circular con-
tour, connecting the nearest to the pole grid points: q = Dq/2, h = hn. The radius of this contour is rc = r(Dq/2).
The velocity circulation C and the vorticity flux P for this contour to the second order of accuracy are equal to
C ¼
XNh

n¼1

uhðDq=2; hn; zÞDhrc; P ¼ xzðr ¼ 0; zÞpr2
c .
Here, Dq and Dh = 2p/Nh are the grid spacings in the q and h coordinates, Nh is the number of grid points in h
direction, and hn = nDh. The expression for the axial vorticity at the pole follows from equating C and P
xzðr ¼ 0; zÞ ¼ 2

rc

1

N h

XNh

n¼1

uhðDq=2; hn; zÞ; rc ¼ rðDq=2Þ. ð42Þ
Note, that the described method of radial coordinate treatment including the pole condition for the axial vor-
ticity was first proposed in [21], within a mixed spectral/finite-difference method and was thoroughly tested in
[8,9].

The pole condition (42) is used for the evaluation dxz/dq (=dx3/dx1) in (38) as well as in the implicit oper-
ator L1 (33).
4.2.1. Turbulent pipe flow at Res = 180

Turbulent pipe flow at Res = 180 has been studied numerically in details in previous papers [7,23,27]. DNS
for the close Reynolds number Res = 200 has been carried out in [9]. In the present paper, calculations were
performed with the aim to compare results with those of Unger and Friedrich [7] and Fukagata and Kasagi
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[27] which are available in tabulated forms at the website (http://www.thtlab.t.u-tokio.ac.jp/).6 In all simula-
tions the length of computational domain was 10R (R is the pipe radius), and the spatial resolution was
96 · 128 · 256 in the radial, azimuthal, and axial directions, respectively.

A polynomial radial coordinate stretching r(q) was used in the present simulations, producing the grid spac-
ing Dr � r 0Dq in the range from 0.47 wall units near the wall to 3.1 wall units near the centerline. The results of
all three DNS are presented in Fig. 3 demonstrating an excellent agreement in the mean velocity, rms velocity
fluctuations, and Reynolds shear stress profiles. The profiles of rms vorticity fluctuations obtained by the pres-
ent method are almost identical with those of [27], while the results of Unger and Friedrich reveal some devi-
ations in the near-wall region (in xh,rms profile) and considerable deviations in the core of the flow, especially
near the pipe’s axis of symmetry (in xz,rms and xh,rms profiles). The latter effect may be attributed to either
weak instability of time integration or inadequate pole treatment in the method of [7].

In [7] the equally spaced grid in the r-direction was used with Dþr ¼ 1:88. Only the terms with derivatives in
the azimuthal direction were treated implicitly in the time-stepping procedure, so numerical stability consid-
erations limited the maximum time-step to Dt ¼ 0:0004R=us � 0:072m=u2

s . Akselvoll and Moin [23] suggested
to treat implicitly different terms in different flow regions and were able to increase the time-step up to
Dt = 0.001R/us within the 3-step Runge–Kutta/Crank–Nicolson scheme of [33]. The same time-step was used
in [27]. The present simulations were performed with Dt ¼ 0:05R=U l � 0:3m=u2

s (Ul is the laminar centerline
velocity) which is 4 times larger than that used in [7] and 5

3
times larger than that used in [23,27]. Note that

only viscous and no convective terms were treated implicitly.

4.2.2. Lamb dipole

Calculation of a Lamb dipole flow in cylindrical coordinates was suggested in [22] as a test case of a flow
crossing the polar axis. This flow is not a good application for polar coordinates but presents a severe test for
code accuracy and stability. The vorticity distribution for a Lamb dipole is
6 An
Unger
websit
xzðq̂;/Þ ¼
2kU

J 0ðkaÞ J 1ðkq̂Þ sin /; 0 6 q̂ 6 a; ð43Þ
where q̂ and / are, respectively, radial and azimuthal coordinates of a polar frame of reference with the origin
in the center of the dipole. When ka = 3.83 the inviscid dipole is moved with a self-induced translation velocity
equal to U.

The present calculations were performed at Reynolds number Re = Ua/m = 1000 in a circular computa-
tional domain of a radius 2.5a with the shear-free boundary conditions and spatial resolution 96 · 128 in
the radial and azimuthal directions. Dipole velocity U and dipole radius a are taken as the velocity and length
scales. The vorticity map corresponding to (43) is shown in Fig. 4(a) for a dipole centered off-axis. In the suc-
cessive Fig. 4(b) and (c) is displayed the motion of the structure towards the right due to the self-induced trans-
lation velocity, until the vortex has completely passed through the origin, without observing any distortion of
the vortex due to the discretization.

As was noted in [22] calculations of the Lamb dipole in cylindrical coordinates requires very small time-
step, since the cells become very small near the origin and velocities are high. However, the concrete values
of the time-step were not given in [22]. It is a convenient case to demonstrate how the choice of implicit oper-
ator in the time-advancing procedure affect the efficiency of the method. For the explicit method (L ” 0), the
most severe restriction on the time-step size follows from the large negative eigenvalues of the viscous-term
operator. For the third-order accurate Runge–Kutta scheme it reads Dt [ 2.5/|K|, where K is the eigenvalue
with the largest modulus. For the case under consideration, it may be estimated as K � �1=ðD2

min ReÞ with Dmin

as a minimal grid spacing in the mesh. For the given mesh and flow parameters, Dmin = 0.5DrDh � 6.4 · 10�4

which leads to Dt � 1.02 · 10�3 as a stability limit. This estimate conforms with the explicit calculations.
The removal of the ‘viscous’ instability by means of using L in the form of (32)–(35) extends the range of

stable integration up to Dt = 5.0 · 10�3. Fig. 4 corresponds to Dt = 4.0 · 10�3 with this kind of the implicit
other DNS presented in [7] was performed by Eggels and Nieuwstadt using a similar code as Unger and Friedrich. Only results of
and Friedrich are used for comparison in the present paper because their data for rms vorticity fluctuations are available at the

e.

http://www.thtlab.t.u-tokio.ac.jp/
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Fig. 3. Turbulent pipe flow at Res = 180. (a) Mean velocity profile; (b) rms velocity fluctuations and Reynolds shear stress; (c) rms
vorticity fluctuations. Present results are compared with DNS data of Fukagata and Kasagi [27] and Unger and Friedrich [7].
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operator. Note, that for Dt = 5.0 · 10�3 the maximal CFL number attains a value as high as CFL = 8, how-
ever, the instability does not arise because of the compensative viscous damping.

Stability of the time advancing may be further increased if the main contribution of linearized convective
term is included into the implicit operator. The L in the factorized form ðI � sLÞ ¼ ðI � sL̂1ÞðI � sL̂2Þ with
L̂1u ¼ L1u�
1
r um

q
1
r0

druq
q

dq � uq

� �
1

rr0 rum
q

q;h duh
q

dq

0
@

1
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1
r um
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h
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h
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ð44Þ
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Fig. 4. Vorticity maps of the Lamb dipole at t = 0, t = 1 and t = 2.
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moves the stability bound to Dt = 3.3 · 10�2. In (44) L1 and L2 operators are the 2D reduction of (33) and
(34).

4.3. Cylindrical elliptic coordinates

Cylindrical elliptic coordinates (n,g,z) are defined as follows:
x ¼ c cosh n cos g; y ¼ c sinh n sin g; z ¼ z.
In a plane, normal to z-direction, coordinate lines constitute a set of confocal hyperbolas (g = constant – lines)
and a set of confocal ellipses (n = constant – lines). The focuses are located in the points (x,y) = (�c, 0) and
(c, 0). It may be useful to provide a mesh stretching both in the n and g directions, then the computational
coordinates (x1,x2,x3) and the corresponding metric stretching factors (h1,h2,h3) are defined from the
following:
n ¼ nðx1Þ; g ¼ gðx2Þ; z ¼ x3;

h1ðx1; x2Þ ¼ h0n
0; h2ðx1; x2Þ ¼ h0g

0; h3 ¼ 1;

h0ðx1; x2Þ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2nþ sin2 g

q
.

The discrete equations follow directly from (13)–(17). The only singularities in the equations exist in the fo-
cuses points where the values of x3 must be defined. A simple and stable way is to get x3 in the focus for each
x3 from the expression for Cartesian coordinates x3 = duy/dx � dux/dy, where duy/dx and dux/dy are evalu-
ated with a second order of accuracy using u1,u2 in the nearest grid nodes.

In elliptic coordinates, the discrete Laplace operator, Div Grad, has the following form:
1

h2
0

1

n0
d

dx1

1

n0
d

dx1

þ 1

g0
d

dx2

1

g0
d

dx2

� �
þ d2

dx2
3

. ð45Þ
In the general case solution of the pressure equation (24) requires iterations, since h0 = h0(x1,x2). For 2D
flows, when d/dx3 ” 0, operator (45) after multiplication by h2

0 becomes separable, and the pressure equation
may be solved by a fast direct cyclic reduction method [43].

To test the applicability of the method to elliptic coordinates a Lamb dipole flow was calculated with the
similar parameters as in the previous section but in the elliptic computational domain (x/2.6)2 + (y/2.4)2

6 1.
The computational mesh with 64 · 128 grid points and no n,g stretching (n = x1, g = x2) was used (shown in
Fig. 5(a)).

Vorticity maps, corresponding to t = 0 and t = 2 are shown in Fig. 5(b) and (c). The evolution of the Lamb
dipole does not indicate any distortion of the vortex due to the discretization. Distribution of the vorticity
along the x-axis for t = 2 is given in Fig. 6 demonstrating absolutely smooth behaviour in all points including
the neighbourhood of focuses at x = ±1.
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The results shown were obtained with the time-step Dt = 1 · 10�3 and the factorized viscous term (follow-
ing from (33)–(35) with no modifications) as an implicit operator. The stability bound for this scheme was
found to be Dt � 3 · 10�3. Note that the minimal grid spacing in the mesh was 3.16 · 10�4, which is two times
lesser than the minimal spacing in the cylindrical polar calculations. Thus, the stability restrictions in two
coordinate systems look similar.
4.4. Spherical coordinates

Adaptation of the method to spherical coordinates is a straightforward. The pole problem is solved in a
similar way as in cylindrical coordinates. As a test case of application of the method to spherical coordinates,
consider a spherical Couette flow, i.e., the flow of incompressible fluid between two concentric spheres rotating
about the same axis crossing their centers. The inner and outer radii of the spheres are R1 and R2, respectively.
X1 and X2 are their angular velocities.

The computational coordinates (x1,x2,x3) = (q,h,/) are spherical polar coordinates with the axis of
spheres rotation as a polar axis. The radial coordinate is stretched in order to obtain a nonuniform grid
spacing
x ¼ r sin h cos /; y ¼ r sin h sin /; z ¼ r cos h; r ¼ rðqÞ.
The corresponding metric stretching factors (h1,h2,h3) = (hq,hh,h/) are
hqðqÞ ¼ r0; hhðqÞ ¼ r; h/ðq; hÞ ¼ r sin h.
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The discrete NSE look as follows: � �
Fig. 7.
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As in cylindrical coordinates, one pair of nonlinear terms in the NSE, namely the first term in (47) and the
second term in (48), i.e., the terms containing xq are written in the form of (22), while the other two pairs
are written in the regular form of (13)–(15). This is done to eliminate the need of uh at the polar axis. The
boundary conditions follow from (18):
uq ¼ ruh
q ¼ 0;

1

r
ru/

q ¼ X1R1 sin h at r ¼ R1;

uq ¼ ruh
q ¼ 0;

1

r
ru/

q ¼ X2R2 sin h at r ¼ R2.

ð49Þ
The expressions for the continuity and vorticity equations as well as the expressions for the viscous term fac-
torization follow directly from (16), (17), and (33)–(35) with no modifications.

The discrete Laplace operator in spherical coordinates has the following form:
1

r2r0
d
dq

r2

r0
d
dq
þ 1

r2 sin h
d
dh

sin h
d
dh
þ 1

r2 sin2 h

d2

d/2
. ð50Þ
The pressure equation (24) may be solved using FFT in the /-direction and the cyclic reduction method [43]
for the subsequent 2D Helmholtz equations.

Three dimensionless parameters completely define spherical Couette flow: two Reynolds numbers
Re1 ¼ X1R2

1=m, Re2 ¼ X2R2
2=m, and the gap-size ratio d = (R2 � R1)/R1. For the numerical test we selected

the flow with d = 1.27 and Re2 = 0, i.e., the large-gap flow with the inner sphere rotation only. It is known
from experiments [44,45] and numerical simulations by a spectral method [46] that this flow being steady at
low Reynolds number Re1 becomes unsteady and three-dimensional at supercritical Reynolds numbers.
The critical Reynolds number was estimated as Rec = 407 in [44] and Rec = 406 in [46]. In [45] was obtained
Rec = 406 for a slightly larger gap, d = 1.33. The first unstable mode corresponds to the azimuthal wavenum-
ber m = 3, and the supercritical flows were described in [45,46] as laminar periodic flows with travelling waves
in the azimuthal direction, antisymmetric with respect to the equator.

The computational mesh with 32 · 128 · 64 grid nodes in the radial, meridional, and azimuthal directions,
respectively, was used in the present simulations. At first, the flow at Re1 = 450 was calculated. The initial con-
ditions in this run were taken as a superposition of the axisymmetric Stokes flow velocity and some three-
dimensional perturbation with the �exp(i/) azimuthal dependence. In Fig. 7(a) is shown time evolution of
A3D, the amplitude of 3D counterpart of the flow velocity
t

u

1760 1780 1800 1820
0.08

0.1

0.12

0.14

0.16
(b)

φ

t

A
3D

0 500 1000 1500 2000
0.01

0.02

0.03

0.04

0.05
(a) (c)

Spherical Couette flow at Re1 = 450, Re2 = 0, d = 1.27. (a) Time-evolution of the amplitude of 3D velocity oscillations; (b) u/-
y oscillations in two equatorially symmetric points: solid line, (r,h,/) = (1.2,p/4,0), dashed line, (1.2,3p/4,0); (c) uh distribution in
uatorial plane: solid lines – positive, dashed – negative values, D = ±0.01. The velocity- and length-scales are X1R1 and R1,
ively.
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A2
3DðtÞ ¼

3

4pðR3
2 � R3

1Þ

Z 2p

0

d/
Z p

0

dh
Z R2

R1

juðt; r; h;/Þ � u2Dðt; r; hÞj2r2 sin hdr;
where u2D is the axisymmetric counterpart of the velocity
u2Dðt; r; hÞ ¼
1

2p

Z 2p

0

uðt; r; h;/Þd/.
Fig. 7(a) shows that after a certain period of evolution the flow saturates finally on a constant-amplitude re-
gime. The velocity oscillations in two equatorially symmetric points are presented in Fig. 7(b). Time period-
icity of the oscillations with a 180�-phase shift between the two points is an evidence that the flow represents
an equatorially antisymmetric travelling wave. Instantaneous uh distribution in the equatorial plane h = p/2
given in Fig. 7(c) demonstrates that the flow corresponds to the azimuthal wavenumber m = 3. All these obser-
vations agree with the experimental and numerical results of [44–46]. The period of velocity oscillation
T � 18X�1

1 obtained in the present simulations coincides with that in simulations of [46] at slightly supercrit-
ical Reynolds number Re1 = 413.

The flow at Re1 = 450 was then used as an initial condition for simulations at smaller Reynolds numbers.
Three-dimensional time-periodic regimes were observed down to Re1 = 410, while at Re1 = 405 the oscilla-
tions decayed and the flow eventually evolved to a 2D steady regime. The amplitude of 3D oscillations in
the limiting regimes at different Reynolds numbers are given in Fig. 8. According to Landau theory [47],
the amplitude of supercritical oscillations is proportional to (Re1 � Rec)

1/2, and our results conforms to this
prediction. The critical Reynolds number, obtained by the extrapolation of the present results is Rec = 408
which is in an excellent agreement with the cited experimental and numerical findings.

In closing, note, that the present simulations were performed with the time-step Dt ¼ 0:3X�1
1 . For the oscil-

lations with a period T � 18X�1
1 this value looks quite reasonable.

4.5. Turbulent flow in annular eccentric pipe

Consider a pressure-gradient driven fluid flow along the gap between two parallel but eccentric cylinders of
different radii, Ri and Ro > Ri (see the sketch in Fig. 9(a)). If eccentricity e is comparable with the mean gap
size d = Ro � Ri, then the width of the gap in the narrow part of the pipe h = d � e will be considerably less
than that in the wide part H = d + e. Consequently, the fluid velocity in the narrow gap will be less and the
local Reynolds number will be significantly less than those in the wide gap. The geometrical parameters may
be chosen in such a way that the local Reynolds number in the narrow gap will be too small to sustain tur-
bulence, no matter how large is the global Reynolds number Re = 2dUb/m (here, 2d is the hydraulic diameter
and Ub is the bulk velocity). In the author’s recent numerical study [14] it was indeed shown that two different
flow regimes, namely fully turbulent and partly turbulent, may exist at the same Reynolds number Re = 4000
but different geometrical configurations (see Fig. 9(b) and (c)).
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Fig. 8. Amplitude of 3D velocity oscillations at different supercritical Reynolds numbers.



Fig. 9. (a) Sketch of the eccentric pipe’s cross-section and computational mesh (every 4th line in each direction is shown). Contours of rms
velocity fluctuations at Re = 4000 and e/d = 0.5 [14]: (b) fully turbulent flow (d = Ri); (c) partly turbulent flow (d = Ri/2). Velocity scale is
the bulk velocity.
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The flow in eccentric annular pipe is simulated with the use of bipolar coordinates (n,g) in the plane of the
pipe’s cross-section
x ¼ �h0ðn; gÞ sinh n; y ¼ h0ðn; gÞ sin g; h0ðn; gÞ ¼
c

cosh n� cos g
ð51Þ
with c ¼ ½ðR2
o � R2

i � e2Þ2=4e2 � R2
i �

1=2. The new coordinates vary in the ranges g 2 [0,2p], n 2 [ni,no], where
ni ¼ ln½ð1þ c2=R2

i Þ
1=2 � c=Ri�, no ¼ ln½ð1þ c2=R2

oÞ
1=2 � c=Ro�. The surface n = ni coincides with the inner cylin-

der, and the surface n = no with the outer. The plane g = 0 intersects the pipe along the wide gap, and the
plane g = p along the narrow gap.

To get the node clustering in the dynamically active regions, namely in the near-wall regions and in the
wide-gap part of the pipe the following coordinate stretching is used:
n ¼ aþ b tanh cðx1 � x	1Þ; x1 2 ½x1i; x1o� ¼ ½ni; no�;
g ¼ x2 � k sin x2; x2 2 ½0; 2p�.
The constants a, b, c, k, and x	1 are chosen reasoning from the desired mesh size in the physical space corre-
sponding to the uniform grid in the computational space (x1,x2). The flow is homogeneous in the flow direc-
tion z, so the uniform grid is used in this direction. Coordinates (x1,x2,x3 = z) constitute an orthogonal system
with the metric stretching factors
h1ðx1; x2Þ ¼ h0n
0ðx1Þ; h2ðx1; x2Þ ¼ h0g

0ðx2Þ; h3 ¼ 1
with h0(x1,x2) defined in (51).
The expressions for the discretized NSE, continuity and vorticity equations, as well as the expressions for

the viscous term factorization follow directly from (13)–(17), and (33)–(35) with no modifications.
The discrete Laplace operator in bipolar cylindrical coordinates has exactly the same form as in the elliptic

cylindrical coordinates (45). The only difference is in h0(x1,x2) function. In the 3D case the pressure equation
cannot be solved by direct method. In the present simulations after FFT in the z-direction, it is solved itera-
tively using a combination of the cyclic reduction and the conjugate-gradient methods (for details see [14]).

Calculations were performed on the computational mesh with 64 · 256 · 64 grid points and with the time-step
of about 0.05d/Ub. Two geometrical configurations: (Ri,Ro,e) = (1, 2,0.5)d and (2,3,0.5)d at Re = 4000 were
considered. Qualitatively different turbulent flow regimes were obtained in these two cases. In the first configu-
ration turbulent fluctuations occupy all the pipe cross-section, while in the second configuration the region of tur-
bulent flow coexists with the region of laminar flow. The rms velocity distributions in this two flows are shown in
Fig. 9(b) and (c).

Eccentric annular pipe represents an ideal model for investigating inhomogeneous turbulent flow, where
conditions of turbulence production vary significantly within the cross-section. It is also a convenient model
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to study the peculiarities of the flow in the neighbourhood of the laminar/turbulent interface and the related
entrainment phenomenon.

5. Summary

A finite-difference approach for the three-dimensional Navier–Stokes simulations in arbitrary curvilinear
orthogonal coordinates is presented. It includes a new energy-conserving spatial discretization method and
a semi-implicit third-order accurate Runge–Kutta scheme for time advancement. The time-advancement pro-
cedure exploits a convenient method for the implicit/explicit splitting when different terms of the NSE may be
treated implicitly depending on the problem under consideration. In wall-bounded flows as well as in polar
coordinates problems the most stiffness is usually produced by the viscous term of the NSE. A general algo-
rithm for the viscous term decomposition with the aim of using the approximate factorization method is pre-
sented. A unified method for eliminating a so-called pole problem in polar coordinates is also provided. The
robustness, accuracy, and stability of the method is tested thoroughly by simulating a number of laminar and
turbulent flows in the Cartesian, cylindrical, spherical, elliptic, and bipolar coordinates. The method may be
used for a wide range of laminar and turbulent flow simulations.
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Appendix A. Third-order accuracy of time-integration scheme

The temporal third-order accuracy of the time integration scheme (27)–(30) is proved analytically and
ascertained by analyzing both local and global errors in simulations of unsteady flows in a driven cavity in
[35]. Here, the temporal accuracy of the scheme is evaluated considering turbulent pipe flow simulations of
Section 4.2.1. The velocity field in a developed statistically steady-state is taken as an initial condition u(t0).
At first, the equations are integrated from t0 to t1 = t0 + 1 by an explicit fourth-order Runge–Kutta method
with the time-step Dt = 5 · 10�4 (time-scale is R/Ul, where R is the pipe radius and Ul is the laminar centerline
velocity). This result is considered as ‘‘exact’’ solution uex(t1). After that, starting from u(t0) the approximate
solutions u(t1) are obtained with different Dt P 2.5 · 10�3 using the scheme (27)–(30), and the global errors are
evaluated by comparison with the ‘‘exact’’ solution
Fig.
e ¼ maxfjuiðt1Þ � uex
i ðt1Þj; i ¼ 1; 2; 3g.
The maximum in the last formula is taken over all grid nodes. The dependence of the global error of time inte-
gration on the time-step size is shown in Fig. A.1. The O(Dt3) behaviour of e(Dt) supports the third-order accu-
racy of the scheme. Similar calculations were conducted using the low storage semi-implicit Runge–Kutta
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A.1. Global error of time integration as function of time-step size. Closed symbols, present scheme; open symbols, scheme [22].
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scheme of [34] with coefficients used by Rai and Moin [33]. For application of the approximate factorization
procedure a delta-form of the scheme, which can be found in [22], is used. Unlike the present scheme, e(Dt) for
the scheme of [22,33,34] tends to a O(Dt2) behaviour at small Dt which reflects the second-order accuracy of
this scheme.

Appendix B. Energy conservation by time-integration procedure

In order to demonstrate an energy-conservation property of the proposed method, numerical tests are con-
ducted assuming an inviscid flow in a circular pipe. Even if the spatial discretization ideally satisfies the energy
conservation, the energy may change due to the imperfectness of a time integration scheme. The initial velocity
field is generated similarly to [27] by interpolating velocities from the fully developed turbulent pipe flow of
Section 4.2.1 onto the 16 · 16 · 32 mesh and normalizing the velocity to have zero mean velocity and unit spe-
cific kinetic energy k = E/|D| (E is defined in (21), |D| is the volume of computational domain).

It is known that explicit third-order accurate Runge–Kutta methods have a stability limit of CFL number
<

ffiffiffi
3
p

when applying to the one-dimensional linear convection equation
Fig.

Fig. B
ou
ot
þ c

ou
ox
¼ 0.
This is the reason of using third-order Runge–Kutta schemes for the nonlinear terms of the NSE rather than
first- or second-order Runge–Kutta or Adams–Bashforth schemes, which are unconditionally unstable for the
linear convection equation. It may be suspected that similar stability properties of time integration schemes
are valid for the nonlinear inviscid equations. Fig. B.1 shows the evolution of kinetic energy for the inviscid
flow simulations with different time-step sizes. For comparison the results of application the Adams–
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B.1. Kinetic energy evolution for inviscid flow in a pipe. Lines, present scheme; lines with symbols, Adams–Bashforth scheme.
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Bashforth scheme are also given in Fig. B.1. Peak CFL number over all grid points varies in this test flow in
the range 40Dt–120Dt. Runge–Kutta simulations are stable up to Dt = 0.02 which is in reasonable agreement
with linear stability predictions. The energy in Runge–Kutta simulations with Dt 6 0.02 slightly decreases with
time due to the dissipative nature of third-order Runge–Kutta schemes. In contrast, simulations with the
Adams–Bashforth scheme demonstrate gradual increase in k(t) and diverge eventually for any Dt confirming
the unconditional instability of this scheme.

The dependence of the kinetic energy error at the time moment t = 5 on the time-step size for the two tested
schemes is shown in Fig. B.2. The error slope for small Dt is Dt3 for the current scheme and Dt2 for the Adams–
Bashforth which is consistent with the orders of accuracy of both schemes.
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